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SUMMARY

The direct boundary element method is an excellent candidate for imposing the normal flux boundary condition
in vortex simulation of the three-dimensional Navier–Stokes equations. For internal flows, the Neumann
problem governing the velocity potential that imposes the correct normal flux is ill-posed and, in the discrete
form, yields a singular matrix. Current approaches for removing the singularity yield unacceptable results for the
velocity and its gradients. A new approach is suggested based on the introduction of a pseudo-Lagrange
multiplier, which redistributes localized discretization errors—endemic to collocation techniques—over the
entire domain surface, and is shown to yield excellent results. Additionally, a regularized integral formulation
for the velocity gradients is developed which reduces the order of the integrand singularity from four to two.
This new formulation is necessary for the accurate evaluation of vorticity stretch, especially as the evaluation
points approach the boundaries. Moreover, to guarantee second-order differentiability of the boundary potential
distribution, a piecewise quadratic variation in the potential is assumed over triangular boundary elements. Two
independent node-numbering systems are assigned to the potential and normal flux distributions on the boundary
to account for the single- and multi-valuedness of these variables, respectively. As a result, higher accuracy as
well as significantly reduced memory and computational cost is achieved for the solution of the Neumann
problem.
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INTRODUCTION

Vortex methods are a class of approximation techniques for the grid-free simulation of the unsteady,
incompressible, high-Reynolds-number Navier–Stokes equations in external and internal flows. In
this approach the governing equations are expressed in the vorticity transport form and the solution is
obtained in terms of the trajectories of a large number of discrete vortex elements.

To simulate wall-bounded flow in three dimensions, the velocity field induced by the vortex
elements is first obtained in an unbounded domain and then modified to satisfy the normal and
tangential velocity boundary conditions on the walls.1 For this purpose the normal flux boundary
condition is applied by superimposing a wall-bounded potential flow over the vorticity-induced
velocity field, and the slip velocity induced at the walls is anulled by generating vortex tiles (flat
vortex elements) at the walls, with strength per unit length equal to the slip velocity. Convection of
vorticity is evaluated, with minimal numerical diffusion, by tracking the trajectories of the vortex
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elements in a Lagrangian form, using the total velocity at the element centre. Simulation of viscous
diffusion in the random vortex method is obtained stochastically by the random walk method,
exploiting the similarity between the Gaussian probability distribution function and the Green
function for the diffusion equation. In addition, the vorticity vector associated with each element is
modified by stretch, which is caused by the interaction between the vorticity and velocity gradients at
the element location. A detailed formulation of the numerical algorithm and its application to various
problems is beyond the scope of this paper;1 instead we focus on attaining an accurate solution for the
internal potential flow problem—a task that is critical to the success of the vortex–boundary element
method.

The starting point for obtaining the potential velocity field in the vortex method is the Helmholtz
decomposition of the velocity vector into vortical and potential components.2 Given a distribution of
vortex elements, the vortical component is evaluated in free space using the well-known Biot–Savart
law.2 Since the vortical velocity is divergence-free, pointwise satisfaction of continuity (or the
incompressibility constraint) yields a Laplace equation that defines the flow due to the potential
component. The boundary condition for the Laplace equation is expressed in terms of the normal flux
at the boundary, which is evaluated as the difference between the normal flux boundary condition
prescribed for the Navier–Stokes problem and the normal flux induced by the vortical velocity at the
boundary. Subsequent to the solution of the Neumann problem, the potential velocity and its
gradients are evaluated at the vortex element locations and used to convect and stretch the vortex
elements in the interior, respectively. We obtain the potential flow for the interior using the direct
boundary element method in order to preserve the grid-free nature of the random vortex method.

The solution of the three-dimensional Laplace equation by the classical boundary element method
is by now an academic exercise, examples of which can be found in any reference book on the
method.3 Briefly, the boundary element method converts the differential description for the variation
of the potential within the domain interior into a surface integral formulation, which links the
boundary potential and its normal flux to the potential at an arbitrary point in the domain. Coalescing
the interior point onto the boundary, applying the normal flux boundary condition for the Neumann
problem and solving the resulting integral equation yields the unknown boundary potential
distribution. Note that the Neumann problem is analytically ill-posed and the potential solution is
valid only up to a constant; nevertheless, the potential velocity and its gradients are uniquely defined.

The accurate evaluation of the velocity in the domain is currently an active area of research. In the
conventional form the velocity of an interior point is evaluated by directly differentiating the standard
boundary integral equation3 and is therefore a function of the distributions of the potential and its
normal flux on the boundary. The integrals in this formulation contain third-order singularities, which
lead to a poor approximation of the velocity near the boundary and infinite values at the boundary. A
regularized form of the velocity integrals is available which reduces the order of the singularity by
one and hence improves the quality of the approximations in the interior of the domain
significantly—excluding the boundary where the integrals are still infinitely large.4 The regularized
form of the velocity was later extended to a desingularized integral equation which is accurate
everywhere in the domain, including the boundary.5,6 It should be mentioned here that both
regularized and desingularized versions of the velocity integral are dependent on the distributions of
the normal flux and thetangential derivativesof the potential at the boundary. Since the standard
Neumann solution yields the potential distribution, the corresponding tangential derivatives are
obtained by differentiating the computed potential distribution. Therefore, the accuracy of the
tangential velocities is at best equal to and generally less than that of the potential solution.

More recently, a similar desingularized formulation was developed which couples the velocity in
the domain interior to the normal flux and the two tangential derivatives of the potential on the
boundary.7 The advantage of the new method is that it is capable of bypassing the prerequisite of
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evaluating the boundary potential, by solving the Neumann problem directly in terms of the
tangential derivatives of the boundary potential. Therefore, questions regarding the ill-posedness of
the Neumann problem as well as concerns related to the differentiation of the numerical potential
distribution are eliminated. However, this approach is computationally too intensive as it is necessary
to solve two coupled integral equations for the two components of the tangential velocities at the
walls.

In this paper, we examine two problems related to the application of the boundary element method
to obtain the potential flow inside a three-dimensional domain, which, to the best of our knowledge,
have not been attempted in the past. First, we present the solution of the analytically ill-posed
Neumann problem. We use two standard methods for removing the matrix singularity associated with
the discretized Neumann problem and show that the potential distributions on the boundary are
accompanied by spikes—in turn contaminating the potential flow inside the domain. We propose an
alternative method which is based on the introduction of a pseudo-Lagrange multiplier that
redistributes the localized discretization errors over the entire domain boundary. We show that this
approach yields excellent results on the boundary as well as in the interior. Secondly, we develop a
regularized integral formulation for evaluating the velocity gradients at arbitrary points in the
domain. In this approach the integrand singularity is reduced by two orders as compared with the
classical formulation, significantly improving the velocity gradient estimates near the boundaries.
Since the reduction in the singularity order by two requires the potential on the boundary to be twice-
differentiable, we asign a piecewise quadratic variation to the potential and its normal flux over
planar triangular elements. We extend the exact singular integration algorithm of Medina and
Liggett8 for the linear variation of the potential over flat triangular elements to the case of a quadratic
variation and list the formulae in the Appendix. Finally, we propose one node numbering system for
the variation of the single-valued potential on the boundary; and another node numbering system,
independent of the former, which takes the multi-valuedness of the normal flux at the boundary edges
and corners into account. This approach maintains an accurate solution of the boundary potential and
requires significantly lower computational cost and memory. We verify the accuracy of the developed
methodologies using a test problem of flow inside a cube having parabolic inlet and flat exit velocity
profiles and compare the results with the analytical solutions.

FORMULATION

The Neumann problem describing the potential distributionF�x� inside a domain of interestO, with
boundary@O, is given by

H
2
F�x� � 0; x 2 O; �1a�

q�x� � HF�x� ?n; x 2 @O; �1b�

�

@O

q�x� dS�x� � 0; �1c�

whereS�x� is the surface area of the boundary andn � �nx; ny; nz� is the unit outward normal to it.
Constraint (1c) enforces a zero net flux into the domain and is a necessary condition for the
Neumann solution to exist. This implies that boundary condition (1b) is overspecified, because the
flux at any arbitrary pointx0 on the boundary may be written in terms of the flux at other points.
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Therefore, the Neumann problem is solvable only up to a constant in the potential atx0, which can
arbitrarily be set to zero in the current problem since only the derivatives of the field potential are of
interest here:

F�x0� � 0: �1d�

SOLUTION

Matrix assembly

The Laplace equation can be reformulated in the following boundary integral form3:

F�x�a�x� � ÿ

�

@O

F�x�F�x; x� dS�x� �
�

@O

G�x; x�q�x� dS�x�; �2�

where G�x; x� � G�r� � 1=4pr is the three-dimensional Green function,F�x; x� �
HG�x; x� ?n � G;ini is its normal flux and

a�x� �

1; x 2 �On@O�;

ÿ

�

@O

F�x; x� dS�x�; x 2 @O;

0; x =2 O:

8

>

>

>

<

>

>

>

:

In addition,

G;i �
ÿr;i
4pr2

; r;i �
ri

r
; r �

����������

�riri�
p

; ri � wi ÿ xi i � 1; 2; 3

where Einstein’s rule for indices is used and the differentiation is performed with respect towi. For
simplicity, in what follows, references to independent variables in the integral equations will be
ignored, unless it is explicitly necessary.

Equation (2) can be discretized by decompong@O into a union of K surfaces such that
@O �

PK
k�1 @Ok , and by approximating the potential and normal flux distributions on the boundary

by a set of piecewise smooth polynomials. The accuracy of the approximation depends upon the
proper discretization of the curved boundary surfaces, the correct representation ofF and q
distribution functions, and the accurate evaluation of the singular integrals. In this paper we present
our results with minimum numerical bias by considering geometries with planar surfaces and by
evaluating the singular integrations analytically. Furthermore, we assign piecewise quadratic
interpolation functions to the variation of the potentials and fluxes across each element.
Consequently, the solution is primarily controlled by the grid resolution and distribution.

The exact integration algorithm proposed by Medina and Liggett8 for linear interpolation functions
over flat triangular elements is herein extended to the case of quadratic functions over the elements.
In addition to yielding more accurate results than their linear counterparts (for the same number of
nodes), quadratic interpolation functions are a minimum necessity in the present analysis. This is
because, as will be shown shortly, the regularized formulation for the velocity gradients requires the
boundary potential distribution to be at least twice-differentiable. Thus, the latter must be
approximated by at least a quadratic interpolation function. Note that it is possible to obtain
superlinear convergence for the velocity gradients using linear interpolation functions for the
potential distribution. However, in this case the treatment of the edges and corners is tricky and its
discussion is avoided here.9 The boundary surface is described by a collection ofK plane triangular
elements, and a local orthonormal co-ordinate systemx z Z is assigned to each element as depicted
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in Figure 1. The corresponding unit vectors are represented byt r n, wheret � �tx; ty; tz� and
r � �rx; ry; rz�. The origin of each co-ordinate system is positioned atx, while its orientation is set
such thatt r is parallel to the element plane, andt is along the longest side of the triangle and in the
direction which is consistent with the outward normaln:

F�x�a�x� �
P

K

k�1
Zk

�

@Ok

F
k
�x; z�

4pr3
k

dSk �

�

@Ok

qk
�x; z�

4prk
dSk

 !

; �3�

whererk is the distance between the field pointx and points on boundary elementk, andZk is its
normal projectionn ? �xk ÿ x�. The quadratic variation ofF (or q) over elementk is formulated in the
form f k

�x; z� � ck
1;f � ck

2;f x� ck
3;f z� ck

4;f xz� ck
5;f x

2
� ck

6;f z
2. (Here, f k

�x; z� is a dummy variable
representingF or q.) Taking into account the orientation of the local co-ordinate system, the
coefficientsc for elementk may be obtained by the following, somewhat less complicated, formula:

c1;f

c2;f

c3;f

c4;f

c5;f

c6;f

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

�

1 x1 z1 x1z1 x
2
1 z

2
1

1 x2 z1 x2z1 x
2
2 z

2
1

1 x3 z3 x3z3 x
2
3 z

2
3

1 x4 z1 x4z1 x
2
4 z

2
1

1 x5 z5 x5z5 x
2
5 z

2
5

1 x6 z5 x6z5 x
2
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5

0

B

B

B

B
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1

C

C
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C

A

ÿ1
f �x1; z1�

f �x2; z1�

f �x3; z3�

f �x4; z1�

f �x5; z5�

f �x6; z5�

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

;

where

x4 �

x1 � x2

2
; x5 �

x2 � x3

2
; x6 �

x1 � x3

2
; z5 �

z1 � z3

2

and the indices forx andz refer to the local node numbering system of Figure 1. The nodal values of
F and q at the local level are in turn linked to a global node numbering system. Substituting the

Figure 1. Schematic diagram depicting the co-ordinate system and node numbering of a typical boundary element
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interpolation functions into equation (3) leads to the following boundary element approximation of
equation (2):

a�x�F�x�ÿ
P

K

k�1
�ck

1;FI3;k
� ck

2;FI3;k
x

� ck
3;FI3;k

z
� ck

4;FI3;k
xz

� ck
5;FI3;k

x
2 � ck

6;FI3;k
z

2 �Zk

�

P

K

k�1
�ck

1;qI1;k
� ck

2;qI1;k
x

� ck
3;qI1;k

z
� ck

4;qI1;k
xz

� ck
5;qI1;k

x
2 � ck

6;qI1;k
z

2 �; �4�

where 4pIm;k
x

i
z

j �

�

@Ok

x
i
z

j

rm
k

dSk are listed in the Appendix:

Note that while the potential distribution is single-valued everywhere on the boundary, its normal
flux is multi-valued on the edges and corners. This poses difficulties in assigning the link between the
local and global node numbers. To this end, the multiple-node concept3—assigning as many nodes to
a point on an edge (or a corner) as there are surfaces sharing the edge (or the corner)—may be
implemented to describe the normal flux uniquely everywhere on the boundary. However, extending
this concept to describe the boundary potential may incorrectly yield different potential values for the
same location on an edge or a corner because of round-off and discretization errors. Moreover, an
increase in the number of nodes, due to the assignment of multiple nodes to bothF and q, will
unnecessarily increase the memory requirement as well as the computational cost by a considerable
amount. We propose the implementation of two separate global node numbering systems forF andq.
The first is used to describe the potential distribution overN global nodes in the regular sense, while
the second utilizes the multiple-node prescription to assign the normal flux overM global nodes.
Additionally, the N potential nodes are linked to theM normal flux nodes by a simple indexing
system.

Coalescingx with each of theN collocation nodes that define the potential distribution in equation
(4), carrying out the singular integration over the boundary elements and collecting like terms sets up
a linear system of equations for theN unknown potentials at the nodes:

P

N

j�1
aijFj �

P

M

j�1
bijqj; i � 1; . . . ; N ;

aii � ÿ

P

N

j�1
j 6�i

aij; �5�

whereaii is the solid anglea�x� on each of theN collocation nodes.

Matrix conditioning

In equation (5), matrixaij is singular and cannot be inverted without considering constraint (1d).
Three approaches are presented herein for removing the singularity.

Method 1, the elimination or penalty method, is widely used in the finite element method. In this
approach, constraint (1d) is applied by setting the potential at an arbitrary collocation pointmequal to
zero and eliminating its corresponding equation. Note that by problem definition, constraint (1c) is
also satisfied. Thus

P

N

j�1
aijFj �

P

M

j�1
bijqj; i � 1; . . . ; m ÿ 1; m � 1; . . . ; N : �6�

In Method 2, the Laplace equation is evaluated as a degenerate mixed Dirichlet–Neumann
problem, where the normal flux at an arbitrary collocation pointp is temporarily assumed to be
unknown and its contribution to the system is moved to the left of equation (5). The potentialFm at
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that same point is assumed to be known and equal to zero, thus satisfying constraint (1d). Note thatp
and m reflect the two node numbering systems for the same physical location and thatbipqp

substitutesaimFm in equation (7). The advantage of this method is that by solving for the ‘unknown’
q, the singularity of matrixaij is automatically removed. However, constraint (1c) is not strictly
enforced and the value of the normal flux atp, obtained from the solution of equation (7), may not be
equal to its originally specified value:

P

N

j�1
j 6�m

aijFj ÿ bipqp �

P

M

j�1
j6�p

bijqj; i � 1; . . . ; N : �7�

Barring round-off errors, the first and second methods are expected to yield identically accurate
results in the limit of infinitely fine discretizations ofF and q. However, computationally, both
methods are severely limited, not only by grid density but also by how the grids are distributed. Also,
as will be demonstrated in the Results section, an impractically large number of grid points may be
necessary to obtain a reasonably accurate solution, especially near the edges and corners.

Method 3, which we propose to remedy this problem, is a variation on the pseudo-Lagrange
multiplier idea which was utilized earlier in coupled boundary element and finite element problems.10

It is motivated by the collocation properties of the boundary element method. That is, solutions
obtained by the boundary element method are grid-dependent and local residual errors caused by
machine precision and insufficient discretization may produce spikes in the solutions. Therefore, a
Lagrange multiplier is added to the system of equations to equilibrate the imbalance between its left
and right sides, by scaling and redistributing the residual errors on an area-weighted basis. The value
of the Lagrange multiplier is determined as an unknown of the system.

In the original implementation of this approach, where the solution of mixed Dirichlet-Neumann
problems was sought, constraint (1c) was strictly enforced by including it in the linear system (5) as a
supplementary equation.10 The addition of the constraint perturbs the balance of equations (5). In this
case the role of the Lagrange multiplier is to introduce a controlled error into each of equations (5) as
a tuning mechanism which redistributes the normal flux on the boundary.

In the present implementation of this method the idea of distributing controlled errors is similar to
that of the original version; however, the similarity ends here. In Method 3, a Lagrange multiplier is
added to each of theN equations (5) to control the equilibrium between the left and right sides on an
area-weighted basis, leading to a system ofN equations andN� 1 unknowns. Thus, an additional
equation is required to solve for the multiplier as a new extra unknown of the problem. For the
Neumann problem, where the normal flux is known everywhere, constraint (1c) is satisfied by
construction and is no longer available as an extra equation. On the other hand, constraint (1d) may
be exploited toreducethe number of unknowns by one toN—the number of available equations.
That is, the potential at an arbitrary collocation pointm is treated as a known quantity and set equal to
zero. Note that, unlike in the elimination method, equationm corresponding toFm is not removed
from the system. Thus, the new system of equations is

P

N

j�1
j 6�m

aijFj � dil �

P

M

j�1
bijqj; i � 1; . . . ; N ; �8�

wherel is the Lagrange multiplier (and is usually small.) To obtaindi, l is first assigned a piecewise
quadratic variation over plane triangular elements and its distribution integrated over the surface:

P

K

k�1

�

@Ok

�ck
1;l � ck

2;lx� ck
3;lz� ck

4;lxz� ck
5;lx

2
� ck

6;lz
2
� dSk :
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Carrying out the integration and simplifying yields

P

K

k�1

P

6

j�4

Sk

3
l

k; j
�

P

K

k�1

P

6

j�4
dk; jl

k; j
;

where (.)k; j is the index notation which connects the localjth node number of elementk to the global
node numberi at that point. Note that each of nodes 4, 5 and 6—at the centres of the three sides of
trianglek—contributes a third of the boundary element area to the value ofdk; j, while the vertices do
not contribute at all. Now,di can be evaluated by summing the area contributions from all boundary
elements that share nodei and by settingli � l.

Velocities and their gradients at internal points

Having solved forF�x� on the boundary, the velocity at arbitrary internal points may be obtained
by differentiating equation (2) directly:

uj�x� � ÿ

@F�x�
@xj

� ÿ

�

@O

FF;j dS �

�

@O

G;jq dS; j � 1; 2; 3; �9�

whereF;j � G;ijni; G;ij � �1=4pr3
��3r;ir;j ÿ dij� anddij is the Kronecker delta.

Equation (9) contains anrÿ3 integrand singularity which yields in accurate velocity values as the
evaluation point approaches the boundary. Balaset al.4 introduced a novel regularization technique in
which the singularity is reduced by one order in exchange for evaluating the tangential derivatives of
the potential on the boundaries. The regularized formula is reproduced here in its final form:

uj�x� �
�

@O

G;i�ejim�tmF;z ÿ rmF;x� � dijq� dS; j � 1; 2; 3; �10�

whereeijm is the antisymmetric permutation symbol.
The integral formulations for the velocities are now extended to obtain the corresponding velocity

gradients at arbitrary internal points. The singular form of the velocity gradients is obtained by
directly differentiating equation (9), which yields

@uj�x�

@xl
�

�

@O

FF;jl dS ÿ

�

@O

G;jlq dS; �j; l� � 1; 2; 3; �11�

whereF;jl � G;ijlni andG;ijl � �3=4pr4
��ÿ5r;ir;jr;l � dijr;l � dilr;j � djlr;i�.

The singularity in equation (11) is of the order ofrÿ4 and the accuracy of the velocity gradient
integrals deteriorates very rapidly as the arbitrary points approach the boundary, and the integrals
cease to exist at the boundary. The regularized form of the velocity gradients may be obtained by
differentiating equation (10):

@uj�x�

@xl
� ÿ

�

@O

G;il�ejim�tmF;z ÿ rmF;x� � dijq� dS; �j; l� � 1; 2; 3: �12�

Although the integrand singularity in equation (12) has been reduced by one order, the solution
near the boundary is still quite poor and further reduction of the singularity to orderrÿ2 is desirable.
Application of the chain rule for differentials and Gauss’ theorem to equation (12) and further
simplification leads to the lower-order integral

@uj�x�

@xl
�

�

@O

G;i�ejim�tmF;z ÿ rmF;x� � dijq�;l dS; �j; l� � 1; 2; 3: �13�
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Rewriting the Laplace equation in local co-ordinates,F;ZZ � ÿ�F;xx � F;zz�, and recalling that
q � F;Z, the derivatives in thelth direction in equation (13) may be formulated as

F;xl � F;xxtl � F;xzrl � q;xnl; F;zl � F;xztl � F;zzrl � q;znl;

q;l � q;xtl � q;zrl ÿ �F;xx � F;zz�nl; l � 1; 2; 3:
�14�

Substituting equations (14) into equation (13) yields the final form of the regularized velocity
gradient integrals:

@uj�x�

@xl
�

�

@O

G;ifejim�tmrlF;zz ÿ tlrmF;xx � �tltm ÿ rlrm�F;xz � �tmq;z ÿ rmq;x�nl�

�dij�tlq;x � rlq;z ÿ �F;xx � F;zz�nl�g dS; �j; l� � 1; 2; 3: �15�

We now proceed with the discretization of equations (10) and (15) over theK plane triangular
elements. Note thatG;i can be written in terms of our local co-ordinate system as

G;i �
ÿ�xti � zri � Zni�

4pr3
; i � 1; 2; 3: �16�

The discretized velocities are arrived at by combining equations (10) and (16) and by further
simplifying the result using the properties of the permutation symbol:

uj�x� �
P

K

k�1

�

@Ok

��xknj ÿ Zktj�F
k
;x�x; z� � �zknj ÿ Zkrj�

(

F
k
;z�x; z�

ÿ �xktj � zkrj � Zknj�q
k
�x; z��

dSk

4pr3
k

)

; j � 1; 2; 3: �17�

Similarly, equation (15) can now be discretized in the form

@uj�x�

@xl
�

P

K

k�1

�

@Ok

f�xk njtl � tjnl

ÿ �

� zkrjnl � Zk�njnl ÿ tjtl��F
k
;xx x; z� �

 

� �zk�njrl � rjnl� � xktjnl � Zk�njnl ÿ rjrl��F
k
;zz x; z� �

� �xknjrl � zknjtl ÿ Zk�tjrl � rjtl��F
k
;xz�x; z�

� �xk�njnl ÿ tjtl� ÿ zkrjtl ÿ Zk�njtl � tjnl��q
k
;x�x; z�

� �zk�njnl ÿ rjrl� ÿ xktjrl ÿ Zk�njrl � rjnl��q
k
;z�x; z�g

dSk

4pr3
k

�

; � j; l� � 1; 2; 3: �18�

In equations (17) and (18) the first and second derivatives of the boundary potential as well as the
first derivatives of the normal flux may be obtained by several numerical approximation techniques,
such as the least squares fit. In this paper, we evaluate these expressions by successive differentiation
of the interpolation functions forF andq:

F
k
;x�x; z� � ck

2;F � ck
4;Fz� 2ck

5;Fx; F
k
;z�x; z� � ck

3;F � ck
4;Fx� 2ck

6;Fz;

qk
;x�x; z� � ck

2;q � ck
4;qz� 2ck

5;qx; qk
;z�x; z� � ck

3;q � ck
4;qx� 2ck

6;qz;

F
k
;xx�x; z� � 2ck

5;F; F
k
;zz�x; z� � 2ck

6;F; F
k
;xz�x; z� � ck

4;F:
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RESULTS

The accuracy of the boundary element approximation presented above is now investigated by
comparing the numerical results with the analytical solution of the potential flow inside a cube with
unity dimensions. In particular, we demonstrate with this example the savings in memory and CPU
time using the proposed node numbering approach, the effect of matrix conditioning on the accuracy
of the boundary potential distribution and the flow field inside the domain, and the improvement in
the accuracy of the velocity gradient profiles using the regularized integral formulation. We selected
our test problem of flow in the cube (with the boundary conditions given below) because (i) an exact
solution can be obtained by a standard separation of variables, and (ii) the flow is complicated enough
(with discontinuous velocity gradient at the wall) to test the robustness of our proposed techniques. In
what follows, the cube surfaces are taken to be normal to thex y z global co-ordinate system, the
origin is fixed at a corner of the exit surface andz is parallel to and pointing opposite the flow
direction. The components of the velocity are designated asu v w in the x y z direction,
respectively. The normal flux boundary condition, satisfying constraint (1c), was set at

q�x; y; z � 1� � ÿ6x�1 ÿ x�; q�x; y; z � 0� � 1; q�elsewhere� � 0:

The arbitrary reference point where constraint (1d) is satisfied was selected at (0�5, 0�5, 0�0)—the
centre of the exit plane. Each surface of the cube was discretized into 46 4, 66 6 or 868
rectangular boundary elements and the elements were subsequently subdivided into two right
triangles. Both uniform and non-uniform grid distributions were tested for each grid resolution,
leading to a total of six cases. The non-uniform distribution was prescribed by a standard cosine
function which tends to concentrate more nodes towards the edges.

Table I lists the total number of triangular boundary elements for each of the three resolutions as
well as the number of collocation nodes for the potential and normal flux distributions. The
percentage savings in memory and computational cost are also listed for the proposed node
numbering scheme. Note that these values are not universal and depend on the configuration in
question. For example, approximating the circular cross-sections of a suddenly expanding pipe by
polygons leads to a configuration which has a large number of corners and edge points. As a result,
the observed savings in memory and CPU time will be considerably higher than those presented in
this paper.

The three matrix conditioning methods were applied to each of the six cases and the results are
compared with the exact solution in Figures 2 and 3. Figures 2(a)–2(c) represent the solutions
obtained by Methods 1–3, respectively, and depict the effect of grid resolution and distribution on the
normalized potential distribution along station (x, 0�5, 0�0)—defined asF(x,0�5, 0�0)F=F(0�5, 0�5,
1�0). Figure 2(d) shows the corresponding normal flux distribution obtained by Method 2. Two
characteristics of Method 1 are immediately evident in Figure 2(a). First, potentials obtained by the
uniform and non-uniform grid distributions are of opposite sign, with the latter having the same sign
as the exact solution. Second, the potential distribution exhibits a spike at the reference point, with an
amplitude that is four orders of magnitude larger than the average of the exact potential at the exit.

Table I

Grid
density

Number of
elements

Number of
F-nodes

Number of
q-nodes

% memory
savings

% CPU
savings

464 192 386 486 40 20
666 432 866 1014 26 20
868 768 1538 1734 20 16
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Note that for the uniform grid distributions an increase in grid resolution leads to a significant
reduction in the amplitude of the spikes. However, in the case of non-uniform grids, the influence of
grid resolution is hardly noticeable. On the other hand, for a given grid resolution, non-uniform grids
yield more accurate potentials than their uniform counterparts. Indeed, the solution obtained by the
464 non-uniform grid is more accurate than the one produced by the 868 uniform grid.

Method 2 also produces a spike at the reference point, but with an amplitude that is two orders of
magnitude smaller than the one produced by Method 1. Additionally, the potentials obtained by
uniform and non-uniform grids are of the same sign as the exact solution and are both sensitive to
grid resolution. Figure 2(d) reveals that the apparent improvement in the potential distribution has
been compromised by a spike in the normal flux distribution, which violates constraint (1c).

Figure 2. Parametric study of the effect of grid density and distribution on the solution of the Neumann problem, using three
matrix conditioning techniques: (a) exit potential distribution using Method 1; (b) exit potential distribution using Method 2
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The fundamental observation made from the parametric studies of Methods 1 and 2, despite their
characteristic differences, is that a poor approximation of the potential and normal flux distributions
on the boundary localizes the discretization error in the entire domain into a spike for the potential
(and the flux) at the reference point. Increasing the grid resolution and concentrating more nodes
closer to the edges should eventually remove the spike. However, it is clear from the plots that a
prohibitively large number of grids may be necessary before an acceptable solution is obtained.
Method 3 was proposed to remedy this problem and, as seen in Figure 2(c), it removes the spike even
with the 46 4 uniform grid distribution, while at 868 grid resolution the approximation and the
exact solution are indistinguishable.

Figure 2. (continued) Parametric study of the effect of grid density and distribution on the solution of the Neumann problem,
using three matrix conditioning techniques: (c) exit potential distribution using Method 3; (d) exit normal flux distribution using

Method 2
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Figure 3 depicts a close-up of the obtained solution using the three methods on uniform grids. For
clarity, the spikes at the reference node are masked and the plots are shifted with respect to the
potential atx � 0�0. Notice once again that the potential obtained by Method 1 is negative and of
opposite sign to the exact solution, and the convergence rate appears to be quite slow. On the other
hand, the solution obtained by Method 2 experiences an undershoot in the profile before the spike
runs off, and the convergence rate seems to be faster. Finally, Method 3 produces an acceptable
result, even when using a low resolution, and converges quickly to the exact solution as the mesh is
refined.

Having selected Method 3 for conditioning the singular matrix, we now present the results from the
singular and regularized formulations of the velocity and its gradients in the domain interior, and
compare them with the exact solution. Figure 4(a) represents the parametric study of the singular and
regularized formulations forw along the (0�0014 x4 0�999, 0�5, 0�9999) station. Figure 4(b)
represents the correspondingu component. At all resolutions the agreement between the
approximations and the exact solution is excellent. Interestingly, the singular and regularized
formulations produce identical results for all grid resolutions, even at such a close proximity to the
boundary. This is because the integrations are performed exactly and in closed form. However, as the
field point moves closer to the boundary, the two profiles are expected to diverge from each other
because of the difference in the singularity orders of the integrations—the more singular integrals will
cease to exist farther away from the boundary. Figure 4(c) shows a comparison between the singular
and regularized formulations for the variation ofw along (0�5, 0�5, 0�0014 z4 0�999) at low
resolution. The profiles are identical and agree well with the exact solution.

Figures 5(a) and 5(b) show the parametric studies of the singular and regularized approximations
for @u=@z along (0�0014 x440�999, 0�5, 0�9999), respectively. The singular and exact solutions
compare well within 0�3544 x440�65, but outside this region the approximations become quite
oscillatory and quickly diverge within 0�1 of the boundary. On the other hand, the regularized
solutions display very mild oscillations, are bounded near the boundary and improve with an increase

Figure 3. Close-up of the exit potential distribution obtained by Methods 1–3
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Figure 4. Parametric comparison between singular and regularized integral formulations for the velocity in the interior. The two
formulations produce identical profiles. Method 3 was used in all cases to condition the matrix
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in the grid resolution. Considering that the exact solution is discontinuous at the boundary and that it
takes over 800 terms in the series solution to obtain a non-oscillatory profile near the boundary, the
regularized formulation is doing very well.

Figure 6 depicts the parametric study of the singular and regularized approximations of@u=@x
along (0�5, 0�5, 0�00144 z440�999). The singular integrations diverge at both ends of the
domain, but the approximations improve with an increase in the grid resolution. On the other hand,
the regularized profiles and the exact solution are indistinguishable, even at the low resolution.

Having demonstrated the accuracy of the regularized formulation for the velocity gradients, we re-
examine the three matrix conditioning methods to determine how deeply, if at all, the contamination
from the spike penetrates into the domain. Figure 7(a) depicts the effect of the three matrix

Figure 5. Parametric comparison between (a) singular and (b) regularized formulations for@u=@z in cross-flow direction.
Method 3 was used in all cases to condition the matrix
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conditioning methods on the regularizedw profile along (0�5, 0�5, 0�0014 z40�999). Figures

7(b) and 7(c) represent similar studies for , respectively. Only the results from the case

using 86 8 uniform grid distribution are presented here—the lower resolutions display the same
trend. Notice that the spike seems to have only a local effect in Method 2; nevertheless, the flow
variables—especially the velocity gradients—diverge in the vicinity of the reference point. The
influence of the spike on the flow field is more pronounced in Method 1, where it causes a strong flow
reversal towards the exit and contaminates the velocity gradients everywhere in the field. The clear
conclusion from these parametric studies is that the use of the pseudo-Lagrange multiplier is
necessary for obtaining an accurate description of the potential flow and that the standard elimination
technique produces the poorest-quality results.

CONCLUSIONS

The solution of the 3D internal Neumann problem and the evaluation of the potential velocity and its
gradients at arbitrary locations inside the domain are essential ingredients of a grid-free random
vortex methodology for the simulation of high-Reynolds-number incompressible flow in 3D
geometries. The Neumann problem is used to impose the normal flux boundary condition, while the
velocity gradients are used to evaluate the vorticity stretch in the field. We propose using the direct
boundary element method for this purpose in order to preserve the grid-free nature of the solution and
to eliminate the complexity associated with volumetric meshing.

It was shown in this paper that removing the matrix singularity, which arises from the
discretization of the Neumann problem, by traditional methods leads to a localized spike for the
potential at the eliminated node—in turn yielding unphysical flow results in the domain interior. A
pseudo-Lagrange multiplier was subsequently added to the matrix to smooth out the discretization
errors and was shown to produce accurate results.

Figure 6. Parametric comparison between singular and regularized integral formulations for@u=@x in the streamwise direction.
Method 3 was used in all cases to condition the matrix. Profiles with symbols were obtained using the singular formulation. The

regularized profiles are identical with the exact solution

@u

@x
and

@v

@y
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Figure 7. Parametric study of the flow field in the interior using three matrix conditioning methods. Regularized integral
formulations were used in all cases
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Additionally, it was shown that the classical derivation for the velocity gradients, which has fourth-
order integrand singularity, yields highly inaccurate gradient values near the boundary. Inaccurate
velocity gradients directly affect the stretch term in the random vortex computations and will lead to
poor predictions of the flow field and possibly numerical instability. Thus a regularized integral
formulation of the velocity gradients was developed which reduces the order of the singularity by
two. The singular formulation of the velocity gradients was shown to diverge at approximately 0�1
normalized units away from the boundaries, whereas the regularized version remained bounded at as
close as 0�001 normalized units.

The regularized integral formulation for the velocity gradients requires the potential distribution to
be twice-differentiable. Thus, in this paper, piecewise quadratic interpolation functions were used to
approximate the variations of the potential and normal flux over plane triangular elements. The
singular integrations were performed in closed form and are listed in the Appendix.

Finally, two independent node numbering systems were applied to the boundary potential and its
normal flux—a regular noding system to describe the single-valued potential and a multiple-node
concept to specify the multi-valued normal fluxes at the boundary edges and corners. This scheme
was shown to yield accurate boundary potential solutions and to reduce memory and CPU cost
requirements significantly.
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APPENDIX

Here we present the recursive formulae for the integral evaluations. The recursions stop where the
integrals can conveniently be looked up from a table or be evaluated by a symbolic mathematics
package.

Integrations of type
1
r

m

The details of the integrations of type
�

@O
dS=rm are given in Reference 8 form� 1, 3 and 5. In this

paper we present a pseudo-recursive approach to simplify the computations and extend it to cases
m � ÿ1 and 7, which are necessary for the quadratic integrations and the singular evaluation of the
velocity gradients, respectively.

The basic idea proposed by Medina and Liggett8 is to convert the area integral into a counter-
clockwise line integral around the perimeter of the element using the divergence theorem. Since the
integrals must be carried out along each element side, a local two-dimensional co-ordinate systems is
used for each side in thex z plane;s is parallel to the side andt is normal to it, as depicted in Figure
8(a). TheI1 integral is

I1
�

�

@O

dS

r
� ÿ

P

3

i�1
ti

�si;2

si;1

r2
i dri

�r2
i ÿ Z2

�

���������������������������

�r2
i ÿ Z2

ÿ t2
i �

p

 !

� Zy;

wherei denotes the element side, andsi;1 andsi;2 represent the beginning and end points of each line
segment, respectively.y is a two-dimensional angle which accounts for the integral singularity when
x falls into or on the triangle:y � 2p if x falls inside the triangle;y � p if x falls on the perimeter of
the triangle—excluding the vertices;y � 0 if x is outside the triangle; andy is equal to the angle of
the vertex ifx falls on the vertex. The individual integrals are obtainable from the tables. The other
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integrals are
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Figure 8. Schematic diagram of the local co-ordinate system used in the singular integrations
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Integrations of typexi
z

j
=rm

In this subsection we present the recursive formulae for all the other integrals. Figure 8(b) is the
accompanying diagram defining the notations used in the integrals:

Im
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1
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1
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�
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